Joint model for BIG data using FastJM
jmcsBig.Rd
function for joint model in BIG DATA using FastJM
Arguments
- dtlong
longitudinal dataset, which contains id,visit time,longitudinal measurements along with various covariates
- dtsurv
survival dataset corresponding to the longitudinal dataset, with survival status and survival time
- longm
model for longitudinal response
- survm
survival model
- samplesize
sample size to divide the Big data
- rd
random effect part
- id
name of id column in longitudinal dataset
References
Li, Shanpeng, et al. "Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data." Computational and Mathematical Methods in Medicine 2022 (2022).
Examples
# \donttest{
##
library(survival)
library(dplyr)
fit2<-jmcsBig(dtlong=data.frame(long2),dtsurv = data.frame(surv2),
longm=y~ x7+visit,survm=Surv(time,status)~x1+visit,rd= ~ visit|id,samplesize=200,id='id')
print(fit2)
#>
#> Joint model for Big data using FastJM
#> Call:
#> jmcsBig(dtlong = data.frame(long2), dtsurv = data.frame(surv2),
#> longm = y ~ x7 + visit, survm = Surv(time, status) ~ x1 +
#> visit, samplesize = 200, rd = ~visit | id, id = "id")
#>
#>
#> Total observation in longitudinal data: 1000
#>
#> Chunk size: 200
#>
#> Longitudinal process:
#> Estimate SE Zvalue Pvalue
#> (Intercept) 9.130 0.483 18.896 0.000
#> x7 -0.028 0.008 -3.571 0.000
#> visit -0.085 0.054 -1.592 0.111
#> sigma^2 0.596 0.012 48.186 0.000
#>
#> Survival process:
#> Estimate SE ZValue Pvalue
#> x11_1 -0.032 0.257 -0.123 0.902
#> visit_1 -0.145 0.097 -1.497 0.134
#>
#> Association parameters :
#> Estimate SE Zvalue Pvalue
#> (Intercept)_1 0.219 0.144 1.522 0.128
#> visit_1 0.272 0.844 0.322 0.748
#>
#> Variance Covariance matrix of Random effects:
#> Intercept visit
#> Intercept 2.141 -0.376
#> visit -0.376 0.141
##
# }