Skip to contents

function for joint model in BIG DATA using FastJM

Usage

jmcsBig(dtlong, dtsurv, longm, survm, samplesize = 50, rd, id)

Arguments

dtlong

longitudinal dataset, which contains id,visit time,longitudinal measurements along with various covariates

dtsurv

survival dataset corresponding to the longitudinal dataset, with survival status and survival time

longm

model for longitudinal response

survm

survival model

samplesize

sample size to divide the Big data

rd

random effect part

id

name of id column in longitudinal dataset

Value

returns a list containing various output which are useful for prediction.

References

Li, Shanpeng, et al. "Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risk Data: With Applications to Massive Biobank Data." Computational and Mathematical Methods in Medicine 2022 (2022).

Author

Atanu Bhattacharjee, Bhrigu Kumar Rajbongshi and Gajendra Kumar Vishwakarma

Examples

  # \donttest{
##
library(survival)
library(dplyr)
fit2<-jmcsBig(dtlong=data.frame(long2),dtsurv = data.frame(surv2),
longm=y~ x7+visit,survm=Surv(time,status)~x1+visit,rd= ~ visit|id,samplesize=200,id='id')
print(fit2)
#> 
#>  Joint model for Big data using FastJM
#>  Call: 
#> jmcsBig(dtlong = data.frame(long2), dtsurv = data.frame(surv2), 
#>     longm = y ~ x7 + visit, survm = Surv(time, status) ~ x1 + 
#>         visit, samplesize = 200, rd = ~visit | id, id = "id")
#> 
#> 
#>  Total observation in longitudinal data: 1000 
#> 
#>  Chunk size: 200 
#> 
#>  Longitudinal process: 
#>             Estimate    SE Zvalue Pvalue
#> (Intercept)    9.130 0.483 18.896  0.000
#> x7            -0.028 0.008 -3.571  0.000
#> visit         -0.085 0.054 -1.592  0.111
#> sigma^2        0.596 0.012 48.186  0.000
#> 
#>  Survival process: 
#>          Estimate    SE ZValue Pvalue
#> x11_1     -0.032 0.257 -0.123  0.902
#> visit_1   -0.145 0.097 -1.497  0.134
#> 
#>  Association parameters :
#>               Estimate    SE Zvalue Pvalue
#> (Intercept)_1    0.219 0.144  1.522  0.128
#> visit_1          0.272 0.844  0.322  0.748
#> 
#>  Variance Covariance matrix of Random effects:
#>           Intercept  visit
#> Intercept     2.141 -0.376
#> visit        -0.376  0.141
##
  # }