Prediction using JMbayes2
predJMbayes.Rd
prediction of survival probability and longitudinal marker using jmBayes2
for BIG data
Arguments
- model
fitted model object
- ids
value of id
- process
see
jm
- newdata
dataset having covariate information for the ids mentioned above.
- ...
other parameter options, see
predict.jm
Examples
# \donttest{
##
library(survival)
library(nlme)
library(dplyr)
jmcs1<-jmbayesBig(dtlong=long2,
dtsurv = surv2 ,
longm=y~ x7+visit,
survm=Surv(time,status)~x1+visit,
rd= ~ visit|id,
timeVar='visit',
nchain=1,
samplesize=200,
id='id')
mod3<-jmcs1
ydt<-long2%>%filter(id%in%c(900))
names(ydt)
#> [1] "id" "x1" "x2" "status" "time" "x3" "y" "t1"
#> [9] "visit" "x4" "x5" "x6" "x7"
cdt<-surv2[,'id']%>%filter(id%in%c(900))
names(cdt)
#> [1] "id"
newdata<-full_join(ydt,cdt,by='id')
P2<-predJMbayes(model<-mod3,ids<-c(900),newdata=newdata,process = 'event')
plot(P2$p1[[1]])
##
# }