print.jmbayesBig
print.jmbayesBig.Rd
print method for class 'jmbayesBig'
Usage
# S3 method for jmbayesBig
print(x, ...)
Value
prints table containing various parameter estimates, SE, P- value for both survival and longitudinal submodel, if the model is bayesian it includes their credible interval too.
Examples
# \donttest{
##
library(survival)
library(dplyr)
#################################
mod3<-jmbayesBig(dtlong=long2,
dtsurv = surv2 ,
longm=y~ x7+visit,
survm=Surv(time,status)~x1+visit,
rd= ~ visit|id,
timeVar='visit',
nchain=1,
samplesize=200,
id='id')
print(mod3)
#>
#> Joint model for Big data using jmbayes2
#> Call:
#> jmbayesBig(dtlong = long2, dtsurv = surv2, longm = y ~ x7 + visit,
#> survm = Surv(time, status) ~ x1 + visit, samplesize = 200,
#> rd = ~visit | id, timeVar = "visit", nchain = 1, id = "id")
#>
#>
#> Total observation in longitudinal data: 1000
#>
#> Chunk size: 200
#>
#> Longitudinal process:
#> Mean StDev 2.5% 97.5% Pvalue
#> (Intercept) 8.848 0.455 7.319 9.123 0.000
#> x7 -0.023 0.007 -0.028 -0.001 0.001
#> visit -0.093 0.038 -0.149 -0.002 0.014
#> sigma 0.778 0.020 0.740 0.821 0.000
#>
#> Survival process:
#> Mean StDev 2.5% 97.5% Pvalue
#> x11 -0.054 0.312 -0.748 0.451 0.863
#> visit -0.102 0.064 -0.101 0.158 0.111
#> Mean -0.148 0.057 -0.229 0.016 0.010
#>
#> Random effects covariance matrix:
#> D[1, 1] D[2, 1] D[2, 2]
#> 1.9874728 -0.3173188 0.1265917
# }