print.joinRMLBig
print.joinRMLBig.Rd
print method for class 'joinRMLBig'
Usage
# S3 method for joinRMLBig
print(x, ...)
Value
prints table containing various parameter estimates, SE, P- value for both survival and longitudinal submodel, if the model is bayesian it includes their credible interval too.
Examples
# \donttest{
##
library(survival)
library(dplyr)
mod4<-joinRMLBig(dtlong=long2,
dtsurv = surv2,
longm=y~ x7+visit,
survm=Surv(time,status)~x1+visit,
rd=~ visit|id,
timeVar='visit',
samplesize=200,
id='id')
#> EM algorithm has converged!
#> Calculating post model fit statistics...
#> EM algorithm has converged!
#> Calculating post model fit statistics...
#> EM algorithm has converged!
#> Calculating post model fit statistics...
#> EM algorithm has converged!
#> Calculating post model fit statistics...
#> EM algorithm has converged!
#> Calculating post model fit statistics...
print(mod4)
#>
#> Joint model for Big data using joineRML
#> Call:
#> joinRMLBig(dtlong = long2, dtsurv = surv2, longm = y ~ x7 + visit,
#> survm = Surv(time, status) ~ x1 + visit, samplesize = 200,
#> rd = ~visit | id, timeVar = "visit", id = "id")
#>
#>
#> Total observation in longitudinal data: 1000
#>
#> Chunk size: 200
#>
#> Longitudinal process:
#> Estimate SE Zvalue Pvalue
#> (Intercept)_1 8.771 0.175 50.130 0
#> x7_1 -0.022 0.000 -536.692 0
#> visit_1 -0.085 0.002 -35.703 0
#> sigma2_1 0.599 0.000 3174.213 0
#>
#> Survival process:
#> Estimate SE ZValue Pvalue
#> x11 -0.012 0.060 -0.205 0.837
#> visit -0.140 0.007 -20.201 0.000
#> gamma_1 -0.011 0.005 -2.126 0.034
#>
#> Variance Covariance matrix of Random effects:
#> Intercept visit
#> Intercept 1.975 -0.352
#> visit -0.352 0.132
# }