print.jmcsBig
print.jmcsBig.Rd
print method for class 'jmcsBig'
Usage
# S3 method for jmcsBig
print(x, ...)
Value
prints table containing various parameter estimates, SE, P- value for both survival and longitudinal submodel, if the model is bayesian it includes their credible interval too.
Examples
# \donttest{
##
library(survival)
library(dplyr)
################################
mod2<-jmcsBig(dtlong=data.frame(long2),
dtsurv = data.frame(surv2),
longm=y~ x7+visit,
survm=Surv(time,status)~x1+visit,
rd= ~ visit|id,
samplesize=200,id='id')
print(mod2)
#>
#> Joint model for Big data using FastJM
#> Call:
#> jmcsBig(dtlong = data.frame(long2), dtsurv = data.frame(surv2),
#> longm = y ~ x7 + visit, survm = Surv(time, status) ~ x1 +
#> visit, samplesize = 200, rd = ~visit | id, id = "id")
#>
#>
#> Total observation in longitudinal data: 1000
#>
#> Chunk size: 200
#>
#> Longitudinal process:
#> Estimate SE Zvalue Pvalue
#> (Intercept) 9.130 0.483 18.896 0.000
#> x7 -0.028 0.008 -3.571 0.000
#> visit -0.085 0.054 -1.592 0.111
#> sigma^2 0.596 0.012 48.186 0.000
#>
#> Survival process:
#> Estimate SE ZValue Pvalue
#> x11_1 -0.032 0.257 -0.123 0.902
#> visit_1 -0.145 0.097 -1.497 0.134
#>
#> Association parameters :
#> Estimate SE Zvalue Pvalue
#> (Intercept)_1 0.219 0.144 1.522 0.128
#> visit_1 0.272 0.844 0.322 0.748
#>
#> Variance Covariance matrix of Random effects:
#> Intercept visit
#> Intercept 2.141 -0.376
#> visit -0.376 0.141
# }