Prediction using FastJM
survfitJMCS.Rd
prediction of survival probability using FastJM
for BIG data
Arguments
- model
fitted model object
- ids
value of id
- u
see
survfitjmcs
- method
options are 'Laplace','GH'
- obs.time
vector which represents time variable in the longitudinal data
Value
list of predicted value for the given id along with other information relevant for survival probability confidence plot
Examples
# \donttest{
##
library(survival)
library(dplyr)
jmcs1<-jmcsBig(dtlong=data.frame(long2),
dtsurv = data.frame(surv2),
longm=y~ x7+visit,
survm=Surv(time,status)~x1+visit,
rd= ~ visit|id,
samplesize=200,id='id')
mod2<-jmcs1
P2<-survfitJMCS(model<-mod2,ids<-c(5),u<-seq(surv2[surv2$id==5,]$time,
surv2[surv2$id==5,]$time+10,0.2),obs.time='time')
print(P2)
#>
#> Prediction of Conditional Probabilities of Event
#> based on the pseudo-adaptive Guass-Hermite quadrature rule with 6 quadrature points
#> $`5`
#> times PredSurv
#> 1 2.351878 1.0000000
#> 2 2.351878 1.0000000
#> 3 2.551878 0.9893133
#> 4 2.751878 0.9573583
#> 5 2.951878 0.9573583
#> 6 3.151878 0.9573583
#> 7 3.351878 0.9573583
#> 8 3.551878 0.9573583
#> 9 3.751878 0.9573583
#> 10 3.951878 0.9464924
#> 11 4.151878 0.9356432
#> 12 4.351878 0.9356432
#> 13 4.551878 0.9139051
#> 14 4.751878 0.8809480
#> 15 4.951878 0.8809480
#> 16 5.151878 0.8589332
#> 17 5.351878 0.8368443
#> 18 5.551878 0.8145375
#> 19 5.751878 0.7922527
#> 20 5.951878 0.7922527
#> 21 6.151878 0.7809792
#> 22 6.351878 0.7584506
#> 23 6.551878 0.7361916
#> 24 6.751878 0.7250806
#> 25 6.951878 0.7137624
#> 26 7.151878 0.7023804
#> 27 7.351878 0.6910631
#> 28 7.551878 0.6573517
#> 29 7.751878 0.6573517
#> 30 7.951878 0.6461274
#> 31 8.151878 0.6123296
#> 32 8.351878 0.5893782
#> 33 8.551878 0.5777416
#> 34 8.751878 0.5548858
#> 35 8.951878 0.5548858
#> 36 9.151878 0.5436819
#> 37 9.351878 0.5217708
#> 38 9.551878 0.5108233
#> 39 9.751878 0.4998672
#> 40 9.951878 0.4670233
#> 41 10.151878 0.4563563
#> 42 10.351878 0.4449410
#> 43 10.551878 0.4449410
#> 44 10.751878 0.4331449
#> 45 10.951878 0.4213851
#> 46 11.151878 0.4093684
#> 47 11.351878 0.4093684
#> 48 11.551878 0.4093684
#> 49 11.751878 0.4093684
#> 50 11.951878 0.4093684
#> 51 12.151878 0.4093684
#> 52 12.351878 0.4093684
#>
##
# }